Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.

نویسندگان

  • G Korniss
  • C J White
  • P A Rikvold
  • M A Novotny
چکیده

We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a square-wave oscillating external field. We focus on the multidroplet regime, where the metastable phase decays through nucleation and growth of many droplets of the stable phase. At a critical frequency, the system undergoes a genuine nonequilibrium phase transition, in which the symmetry-broken phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The critical exponents, the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution all are consistent with the universality class of the two-dimensional equilibrium Ising model. We also study the cross-over from the multidroplet regime to the strong-field regime, where the transition disappears.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Phase Transition and Hysteresis in Kinetic Ising Models

We briefly introduce hysteresis in spatially extended systems and the dynamic phase transition observed as the frequency of the oscillating field increases beyond a critical value. Hysteresis and the decay of metastable phases are closely related phenomena, and a dynamic phase transition can occur only for field amplitudes, temperatures, and system sizes at which the metastable phase decays thr...

متن کامل

Kinetic Ising model in an oscillating field : Finite - size scaling at the dynamic phase transition

We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor, kinetic Ising ferromagnet in an oscillating field, using Monte Carlo simulations. The period-averaged magnetization is the order parameter for a proposed dynamic phase transition (DPT). To quantify the nature of this transition, we present the first finite-size scaling study of the DPT for this model. Evidence of a diverging...

متن کامل

Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics.

We study the dynamical response of a two-dimensional Ising model subject to a square-wave oscillating external field. In contrast to earlier studies, the system evolves under a so-called soft Glauber dynamic [Rikvold and Kolesik, J. Phys. A 35, L117 (2002)], for which both nucleation and interface propagation are slower and the interfaces smoother than for the standard Glauber dynamic. We choos...

متن کامل

Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model.

The two-dimensional kinetic Ising model, when exposed to an oscillating applied magnetic field, has been shown to exhibit a nonequilibrium, second-order dynamic phase transition (DPT), whose order parameter Q is the period-averaged magnetization. It has been established that this DPT falls in the same universality class as the equilibrium phase transition in the two-dimensional Ising model in z...

متن کامل

5 Dynamic Phase Diagram for a Periodically Driven Kinetic Square-lattice Ising Ferromagnet: Finite-size Scaling Evidence for the Absence of a Tri-critical Point

We discuss the subtle finite-size effects of the dynamic phase transition (DPT) in a two-dimensional kinetic Ising ferromagnet driven by an oscillating external field. We present computational and analytical evidence that there is no finite-temperature tri-critical point in the dynamic phase diagram of this model. This contrasts with earlier claims [1–3] for the existence of a tri-critical poin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 63 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001